ST. MARY LAKE DYNAMICS

John B. Sprague, Ph.D. To Steering Committee, SSIWPA 2015.August.21

Part 1.

The smaller inputs of phosphorus

Yearly inputs of P

from Management Plan

Septic 5 kg
Groundwater 10 kg
Waterbirds 13 kg
Aerial 20 kg
Land runoff 50 – 150 kg (say 100 kg)

Possible reductions ?????

Potential reduction

Total, these 5 sources
 Possible reduction

approx. 150 kg down to 100

Benefit

= 50 kg optimistic

Part 2

Larger source of phosphorus the sediment

Initial P from sediment at autumn turnover

Estimates by spring-to-autumn change

450 kg/year
450 kg/year
563 kg/year

(Nordin et al. 1983) (Hodgins 2015) (Watson 2013)

JBS estimate

Compare total P in lake just after autumn turnover

Compare aerated with non-aerated years. ... the difference = initial load from sediment

Early aerator:			
3 years without aeration:	3	years with succes	sful
	ae	eration:	
(1979) 699 kg	(1988)	540 kg	
(1980)1062 kg	(1989)	306 kg	
(1981)1054 kg	(1990)	534 kg	
Average = 938 kg	A	verage = 46	0 kg

Difference = 478 kg

JBS estimate

4 years	without aeration:
(2005)	1273 kg
(2006)	872 kg
(2007)	551 kg
(2008)	621 kg

2	years	with	succe	sstul	
a	eratio	n:			

(2009)	434 kg
(2010)	303 kg

Average = 829 kg Average = 368.5 kg Difference = 460.5 kg

□ For the two periods of time

Average difference for aeration/no aeration = (478 + 460.5) / 2 = 470 kg

Initial P from sediment at autumn turnover

Now we have four independent estimates (years of no aeration)

450 kg/year
450 kg/year
563 kg/year
470 kg/year

(Nordin et al. 1983) (Hodgins 2015) (Watson 2013) (Sprague 2014)

Let us generalize as 450 to 500 kg per year for initial P from the sediment.

Part 3

Loss of phosphorus during winter

Mostly by precipitation back into the sediment

Loss of P --- years of no aeration

	Oct-Nov	Following March
1979	699	716
1980	1062	653
1994	797	680
2005	1273	908
2006	872	243
2007	551	331
2008	621	337
2014	745	399 (Hodgins)

P load: no aeration

P load: no aeration

		Followina
	Oct/Nov	March
No aeration		
1979	699	716
1080	1062	653
1994	797	680
2005	1273	908
2006	872	243
2000	551	331
2007	621	337
2000	745	300
2014	740	000
Aprators ove	nwhelmed	
1086	581	301
1007	967	470
1907	007	470
2011	090	917
2012	970	730
2013	858	334

Side issue net P from sediment

Take all the numbers from preceding graph
... average the loss over the winter
... assume that all P goes back into sediment
The average disappearance is 285 kg.
Previously we said that initial P from sediment was
400 to 450 kg.
Subtracting,

net P from sediment is 115 to 165 kg

 \square Net sediment P = about 115 to 165 kg

Larger amount than the small sources we considered at the beginning

If we wish to improve the lake, this source deserves our focus.

		Following
	Oct/Nov	Tonowing
	Oct/Nov	March
No aeration		
1979	699	716
1080	1062	653
1994	797	680
2005	1273	908
2006	872	243
2007	551	331
2007	621	337
2008	021	337
2014	745	399
- <i>,</i>		
Aerators overv	whelmed	
1986	581	394
1987	867	470
2011	895	917
2012	970	730
2013	858	334
2010	000	004
Effective coret	tion	
Ellective aerai		070
1988	540	279
1989	306	274
1990	534	309
2009	434	139
2010	303	372
		_

Linear regression ?

\Box Y = 10.049 + 0.6433X

- □ So on average
 - 1200 kg P in the autumn should result in 782 kg next spring.... a loss of 35%
 - 800 kg P in the autumn should result in 525 kg next spring a loss of 34%.
 - 400 kg in autumn should result in 267 next spring a loss of 33%.

Conclusions ?

(1) Yes,

the springtime load of P is related to autumn P.

The relationship is variable but definite.

Conclusions ?

(2) The springtime load is expected to be about 2/3 of the preceding autumn load.

(3) Therefore, a lower load in autumn will mean less P going back into the sediments.

(4) Referring back to the last graph ...
 We are talking decrease in 100s of kg of P ...
 Not just that 50 kg (optimistic) from improving the land runoff.

Speculation

If successful reduction of P from the sediment were continued

we would expect the lake to gradually clean itself

.... improve

its trophic status.... less P accumulating in sediment tocause trouble in future years.

Recommendation

The management plan should specify a study to determine why the aerators failed after two years of successful operation.

References

Hodgins, D.O. 2015. TAC working group meeting - Jan 7^{th.} Follow-up notes. Document is a work in progress. Electronic document for Technical Advisory Committee of the Salt Spring Island Watershed Protection Authority. Feb 23, 2015, 10 p.

Nordin, R.N., C.J.P. McKean, J.H. Wiens, 1983. St. Mary Lake water quality: 1979-1981. Prov. of British Columbia, Ministry of Environment, Victoria, B.C. Report, 120 p. [File: 64.080302]

Sprague, J.B. 2014. Amount of phosphorus released yearly by sediments of St. Mary Lake. Report for Technical Advisory Committee of the Salt Spring Island Watershed Protection Authority. 9 p

Watson, R. 2013. St Mary Lake water quality problems. Electronic report to Salt Spring Water Council, March 27, 2013, Bob Watson, Trustee of North Salt Spring Waterworks District. 10 p.